

CONTINUITY AND DIFFERENTABILITY

BASIC CONCEPTS

Continuity and Discontinuity of a Function at a Point: A function f(x) is said to be continuous at a point a of its domain if

$$\lim_{x \to a^{-}} f(x)$$
, $\lim_{x \to a^{+}} f(x)$, $f(a)$ exist and $\lim_{x \to a^{-}} f(x) = \lim_{x \to a^{+}} f(x) = f(a)$

A function f(x) is said to be discontinuous at x = a if it is not continuous at x = a.

- 2. Properties of Continuous Function:
 - Every constant function is continuous function.
 - Every polynomial function is continuous function.
 - Identity function is continuous function.
 - Every logarithmic and exponential function is a continuous function.

List of Useful Formulae:

3. (i)
$$\frac{d}{dx}(x^n) = nx^{n-1}$$
 (ii) $\frac{d}{dx}(ax+b)^n = n(ax+b)^{n-1}$. a

(iii)
$$\frac{d}{dx}(e^x) = e^x$$
 (iv) $\frac{d}{dx}e^{ax} = a.e^{ax}$

(v)
$$\frac{d}{dx}a^x = a^x \cdot \log_e a$$
 (vi) $\frac{d}{dx}a^{bx} = ba^{bx} \log_e a$

(vii)
$$\frac{d}{dx}\log_e x = \frac{1}{x}$$
 and $\frac{d}{dx}\log_e ax = \frac{a}{x}$

(viii)
$$\frac{d}{dx}\log_a x = \frac{1}{x \cdot \log_e a}$$
 and $\frac{d}{dx}\log_a bx = \frac{b}{x \cdot \log_e a}$

4. (i)
$$\frac{d}{dx}\sin x = \cos x$$
 and $\frac{d}{dx}\sin ax = a\cos ax$
(ii) $\frac{d}{dx}\cos x = -\sin x$ and $\frac{d}{dx}\cos ax = -a\sin ax$

(iii)
$$\frac{d}{dx}\tan x = \sec^2 x$$
 and $\frac{d}{dx}\tan ax = a\sec^2 ax$

(iv)
$$\frac{d}{dx}\cot x = -\csc^2 x$$
 and $\frac{d}{dx}\cot ax = -a\csc^2 ax$

(v)
$$\frac{d}{dx} \sec x = \sec x \tan x$$
 and $\frac{d}{dx} \sec ax = a \sec ax \cdot \tan ax$

(vi)
$$\frac{d}{dx}$$
cosec $x = -\cos ex \cot x$ and $\frac{d}{dx}$ cosec $ax = -a \csc ax$. cot ax

5. (i)
$$\frac{d}{dx}\sin^{-1}x = \frac{1}{\sqrt{1-x^2}}$$
 and $\frac{d}{dx}\sin^{-1}ax = \frac{a}{\sqrt{1-a^2x^2}}$

122 Mathematics—XII: Term—1

(ii)
$$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}$$

(ii)
$$\frac{d}{dx}\cos^{-1}x = \frac{-1}{\sqrt{1-x^2}}$$
 and $\frac{d}{dx}\cos^{-1}ax = \frac{-a}{\sqrt{1-a^2x^2}}$

(iii)
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2}$$

(iii)
$$\frac{d}{dx} \tan^{-1} x = \frac{1}{1 + x^2}$$
 and $\frac{d}{dx} \tan^{-1} ax = \frac{a}{1 + a^2 x^2}$

(iv)
$$\frac{d}{dx}\cot^{-1}x = \frac{-1}{1+x^2}$$

(iv)
$$\frac{d}{dx}\cot^{-1}x = \frac{-1}{1+x^2}$$
 and $\frac{d}{dx}\cot^{-1}ax = \frac{-a}{1+a^2x^2}$

(v)
$$\frac{d}{dx} \sec^{-1} x = \frac{1}{x\sqrt{x^2 - 1}}$$

(v)
$$\frac{d}{dx} \sec^{-1} x = \frac{1}{x\sqrt{x^2 - 1}}$$
 and $\frac{d}{dx} \sec^{-1} ax = \frac{1}{x\sqrt{a^2 x^2 - 1}}$

(vi)
$$\frac{d}{dx}\csc^{-1}x = \frac{-1}{x\sqrt{x^2 - 1}}$$

(vi)
$$\frac{d}{dx} \csc^{-1} x = \frac{-1}{x\sqrt{x^2 - 1}}$$
 and $\frac{d}{dx} \csc^{-1} ax = \frac{-1}{x\sqrt{a^2 x^2 - 1}}$

Chain Rule: Chain rule is applied when the given function is the function of function i.e.,

if y is a function of x, then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ or $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \cdot \frac{du}{dx}$

- **Parametric Form:** Sometimes we come across the function when both x and y are expressed in terms of another variable say t i.e., $x = \phi(t)$ and $y = \psi(t)$. This form of a function is called parametric form and t is called the parameter.
- **7.** Rolle's Theorem: If f(x) be a real valued function, defined in a closed interval [a, b] such that:
 - (i) it is continuous in closed interval [a, b].
 - (ii) it is differentiable in open interval (a, b).
 - (iii) f(a) = f(b). Then there exists at least one value $c \in (a, b)$ such that f'(c) = 0.
- Lagrange's Mean Value Theorem:

If f(x) is a real valued function defined in the closed interval [a, b] such that:

- (i) it is continuous in the closed interval [a, b].
- (ii) it is differentiable in the open interval (a, b).

Then there exists at least one real value $c \in (a, b)$ such that $f'(c) = \frac{f(b) - f(a)}{(b - a)}$.

Some Standard Results:

(i) (a)
$$\lim_{x \to a} \frac{x^n - a^n}{x - a} = na^{n-1}, a > 0, n \in Q$$

(b)
$$\lim_{x \to a} \frac{x^m - a^m}{x^n - a^n} = \frac{m}{n} a^{m-n}, m, n \in Q$$

(c)
$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$
 (d)
$$\lim_{x \to 0} \cos x = 1$$

(d)
$$\lim_{x \to 0} \cos x = 1$$

(e)
$$\lim_{x \to 0} \frac{\tan x}{x} = 1$$

(ii) Evaluation of limits of inverse trigonometric functions:

$$(a) \quad \lim_{x \to 0} \frac{\sin^{-1} x}{x} = 1$$

(a)
$$\lim_{x \to 0} \frac{\sin^{-1} x}{x} = 1$$
 (b) $\lim_{x \to 0} \frac{\tan^{-1} x}{x} = 1$

(iii) Evaluation of limits of exponential and logarithmic functions:

$$(a) \quad \lim_{x \to 0} e^x = 1$$

(b)
$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1$$

(a)
$$\lim_{x \to 0} e^x = 1$$
 (b) $\lim_{x \to 0} \frac{e^x - 1}{x} = 1$ (c) $\lim_{x \to 0} \frac{\log |1 + x|}{x} = 1$ (d) $\lim_{x \to 0} \frac{(1 + x)^n - 1}{x} = n$

(d)
$$\lim_{x \to 0} \frac{(1+x)^n - 1}{x} = n$$

(e)
$$\lim_{x \to 0} \frac{a^x - 1}{x} = \log_e a$$

(*iv*) Limits at infinity: This method is applied when $x \to \infty$.

Procedure to solve the infinite limits:

- (a) Write the given expression in the form of rational function.
- (b) Divide the numerator and denominator by highest power of x.
- (c) Use the result $\lim_{x\to\infty} \frac{1}{x^n} = 0$, where n > 0.
- (d) Simplify and get the required result.

MULTIPLE CHOICE QUESTIONS

Choose and write the correct option in the following questions.

1. The function $f: R \to R$ given by f(x) = -|x-1| is

[CBSE 2020 (65/2/1)]

- (a) continuous as well as differentiable at x = 1
- (b) not continuous but differentiable at x = 1
- (c) continuous but not differentiable at x = 1
- (d) neither continuous nor differentiable at x = 1
- 2. The function $f(x) = e^{|x|}$ is

[NCERT Exemplar]

- (a) continuous everywhere but not differentiable at x = 0
- (b) continuous and differentiable everywhere
- (c) not continuous at x = 0
- (d) none of these
- 3. The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at
 - (a) 4
- (b) -2
- (c) 1

- d) 1.5
- 4. The number of points at which the function $f(x) = \frac{1}{x [x]}$ is not continuous is

[NCERT Exemplar]

- (a) 1
- (b) 2

- (c) 3
- (d) none of these
- 5. The function $f(x) = \begin{cases} \frac{\sin x}{x} + \cos x, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$ is continuous at x = 0, then the value of k is

[NCERT Exemplar]

- (a) 3
- (b) 2

- (c) 1
- (d) 1.5
- 6. The value of k which makes the function defined by $f(x) = \begin{cases} \sin \frac{1}{x}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$, continuous at x
 - (a) 8
- (b) 1

- (c) -1
- (d) none of these

7. The function $f(x) = \cot x$ is discontinuous on the set

[NCERT Exemplar]

 $(a) \{x = n \ \pi : n \in Z\}$

(b) $\{x = 2 \ n\pi : n \in Z\}$

(c) $\left\{x = (2n+1)\frac{\pi}{2}; n \in Z\right\}$

 $(d) \left\{ x = \frac{n\pi}{2}; n \in Z \right\}$

8. Let $f(x) = |\sin x|$. Then

[NCERT Exemplar]

- (a) *f* is everywhere differentiable
- (b) f is everywhere continuos but not differentiable at $x = n\pi$, $n \in \mathbb{Z}$
- (c) f is everywhere continuous but not differentiable at $x = (2n + 1)\frac{\pi}{2}$, $n \in \mathbb{Z}$
- (d) none of these
- 124 Mathematics-XII: Term-1

9.	The function $f(x) = -\frac{1}{x}$	$\frac{x-1}{(x^2-1)}$ is discontinuous	at	[CBSE 2020 (65/2/2)]	
	(a) exactly one point		(b) exactly two point	s	
	(c) exactly three poin	ts	(d) no point		
10.	If $f(x) = x^2 \sin \frac{1}{x}$, wh	ere $x \neq 0$, then the valu	e of the function f at	x = 0, so that the function is	
	continuous at $x = 0$, is			[NCERT Exemplar]	
	(a) 0	(b) -1	(c) 1	(d) None of these	
11.	The function $f(x) = \int x^{2} dx$	x + x-1 is	10.7% S.	88 98-3	
	(a) continuous at $x =$	The state of the s	(b) continuous at $x =$	1 but not at $x = 0$.	
	(c) discontinuous at $x = 0$ as well as at $x = 1$.		(d) continuous at $x = 0$ but not at $x = 1$.		
12.	The function $f(x) = \frac{4-x^2}{4x-x^3}$ is				
	(a) discontinuous at o	only one point	(b) discontinuous at	exactly two points	
	(c) discontinuous at e	exactly three points	(d) none of these		
13.	The set of points whe	ere the functions f given	$\mathbf{by}f(x) = x-3 \cos x$	x is differentiable is	
	(a) R	(b) $R - \{3\}$	(c) $(0,\infty)$	(d) none of these	
14.	Differential coefficien	nt of sec (tan ^{-1}x) w.r.t. x :	is	[NCERT Exemplar]	
	$(a) \frac{x}{\sqrt{1+x^2}}$	$(b) \ \frac{x}{1+x^2}$	$(c) x\sqrt{1+x^2}$	$(d) \ \frac{1}{\sqrt{1+x^2}}$	
15.	If $u = \sin^{-1}\left(\frac{2x}{1+x^2}\right)$ and $v = \tan^{-1}\left(\frac{2x}{1-x^2}\right)$, then $\frac{du}{dv}$ is				
	(a) $\frac{1}{2}$	(b) x	(c) $\frac{1-x^2}{1+x^2}$ {4, -4}, ϕ	(d) 1	
16.	If $y = \log \sqrt{\tan x}$, then	n the value of $\frac{dy}{dx}$ at $x =$	$=\frac{\pi}{4}$ is		
	(a) 0	(b) 1	(c) $\frac{1}{2}$	(<i>d</i>) ∞	
17.	If $y = \sqrt{\sin x + y}$, then $\frac{dy}{dx}$ is equal to				
	(a) $\frac{\cos x}{2y-1}$	$(b) \ \frac{\cos x}{1-2y}$	$(c) \ \frac{\sin x}{1 - 2y}$	$(d) \ \frac{\sin x}{2y-1}$	
18.	The function $f(x) = x $	x + x-2 is			
	(a) differentiable at $x = 0$ and at $x = 2$ (b) differentiable at $x = 0$ but not at $x = 2$.				
	(c) not differentiable	at $x = 0$ and at $x = 2$.	(d) none of these	one of these	
19.	The function given by $f(x) = \tan x$ is discontinuous on the set				
	(a) $\{x : x = 2n\pi, n \in Z\}$	}	(b) $\{x: x = (n-1)\pi, n \in Z\}$		

(c) $\{x: x = n\pi, n \in Z\}$

- (d) $\{x: x = (2n+1)\frac{\pi}{2}, n \in Z\}$
- The derivative of $\tan x$ w.r.t. $\sin x$ is
- (a) $\tan^2 x$ (b) $\sec x$ (c) $\frac{\tan x}{\sin x}$
- (d) $\sec^3 x$
- 21. The function $f(x) = \frac{x^2 x 6}{x 3}$ is not defined for x = 3. In order to make f(x) continuous at x = 3, f(3) should be defined as
 - (a) 1
- (b) 3

- (c) 5
- (*d*) none of these

22.	If $f(x) = x - 3$ and $g(x) = \frac{x^2}{3} + 1$, then which of the following can be a discontinuous function
	3

(a)
$$f(x) + g(x)$$

(b)
$$f(x) \cdot g(x)$$

(a)
$$f(x) + g(x)$$
 (b) $f(x) \cdot g(x)$ (c) $f(x) - g(x)$ (d) $\frac{g(x)}{f(x)}$

$$(d) \ \frac{g(x)}{f(x)}$$

The set of points where the function f given by $|3x-2| \sin x$ is differentiable is

(b)
$$(0, \infty)$$

(c)
$$R - \left\{ \frac{2}{3} \right\}$$

(b) $(0, \infty)$ (c) $R - \left\{ \frac{2}{3} \right\}$ (d) none of these

24. Let
$$f(x) = \begin{cases} \cos[x], & x \ge 0 \\ |x| + a, & x < 0 \end{cases}$$
 where $[x]$ denotes the greatest integer $\le x$. If $\lim_{x \to 0} f(x)$ exists then a is equal to

$$(c)$$
 0

(d) none of these

(a) 1 (b) 3 (c) 0 (d) none of the contraction (a) 1 (b) 3 (c) 0 (d) none of the contraction (d)
$$f(x) = \begin{cases} x[x-1], & 0 \le x < 2 \\ [x](x-1), & 2 \le x < 3 \end{cases}$$
 where [x] denotes the greatest integer $\le x$ then

(a)
$$f(x)$$
 is continuous everywhere.

(b)
$$f(x)$$
 is not continuous at $x = 1$ and $x = 2$

(c)
$$f(x)$$
 is not differentiable at infinite points

26.
$$f:[-2a,2a] \to R$$
 is an odd function such that the left hand derivative at $x=a$ is zero and $f(x)=f(2a-x) \forall x \in (a,2a)$. Then its left hand derivative at $x=-a$ is

(d) does not exist.

27. The function
$$f(x) = |x-3|, x \in R$$
 is

(b) is not continuous but differentiable at
$$x = 3$$

(c) is continuous but not differentiable at
$$x = 3$$

28. If
$$f(x) = x^n$$
, then the value of

$$f(1) - \frac{f'(1)}{1!} + \frac{f''(1)}{2!} - \frac{f'''(1)}{3!} + \dots + \frac{(-1)^n f^n(1)}{n!}$$
 is

$$(c) 2^{n}$$

29. If
$$x = e^{y + e^{y + ... to \infty}}$$
, $x > 0$, then $\frac{dy}{dx}$ is

(a)
$$\frac{1}{x}$$

(a)
$$\frac{1}{x}$$
 (b) $\frac{x}{1+x}$

(c)
$$\frac{1-x}{x}$$

(d) none of these

30. Let
$$f(x) = \frac{1 - \tan x}{4x - \pi}$$
, $x \neq \frac{\pi}{4}$, $x \in \left[0, \frac{\pi}{2}\right]$. If $f(x)$ is continuous in $\left[0, \frac{\pi}{2}\right]$, then $f\left(\frac{\pi}{4}\right)$ is

(a)
$$\frac{1}{2}$$

(a)
$$\frac{1}{2}$$
 (b) $-\frac{1}{2}$

$$(d) - 1$$

31. The value of
$$p$$
 and q for which the function

$$f(x) = \begin{cases} \frac{\sin(p+1)x + \sin x}{x}, & x < 0 \\ \frac{q}{\sqrt{x + x^2} - \sqrt{x}}, & x = 0 \\ \frac{\sqrt{x + x^2} - \sqrt{x}}{x^{3/2}}, & x > 0 \end{cases}$$
 is continuous for all $x \in R$, are

(a)
$$p = \frac{1}{2}, q = \frac{3}{2}$$

(b)
$$p = \frac{5}{2}, q = \frac{7}{2}$$

(a)
$$p = \frac{1}{2}, q = \frac{3}{2}$$
 (b) $p = \frac{5}{2}, q = \frac{7}{2}$ (c) $p = -\frac{3}{2}, q = \frac{1}{2}$ (d) none of these

126 Mathematics—XII: Term-1

32. The function
$$f(x) = \begin{cases} \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

- (a) is continuous.
- (c) has jump discontinuity.

- (b) has removable discontinuity.
- (d) has oscillating discontinuity.

33. The function
$$f(x) = \begin{cases} 2 - x, & \text{if } x < 2 \\ 2 + x, & \text{if } x \ge 2 \end{cases}$$
 at $x = 2$

- (a) is continuous.
- (c) has jump discontinuity.

- (b) has removable discontinuity.
- (d) has oscillating discontinuity.

34. The function
$$f(x) = \begin{cases} \frac{\sin x}{x} + \cos x, & \text{if } x \neq 0 \\ 1, & \text{if } x = 0 \end{cases}$$

(a) is continuous.

(b) has removable discontinuity.

(c) has jump discontinuity.

(d) has oscillating discontinuity.

35. If
$$f(x) = |x| + |x - 2|$$
, then

- (a) f(x) is continuous at x = 0 but not at x = 2.
- (b) f(x) is continuous at x = 0 and at x = 2.
- (c) f(x) is continuous at x = 2 but not at x = 0.
- (d) None of these.

36. The function
$$f(x) = \frac{1}{x-1}$$
 at $x = 1$.

(a) is continuous

(b) has removable discontinuity.

(c) has jump discontinuity.

(d) has asymptotic discontinuity.

37. The vertical asymptotes to curve
$$y = \frac{e^x}{x}$$
 is

(a) $x = 1$ (b) $x = 0$

- (c) x = 2 (d) Curve has no any asymptotes.

38. An oblique asymptote to the curve
$$y = x + e^{-x} \sin x$$
 is

- (a) y = x + e (b) y = x (c) $y = x + \frac{1}{\pi}$ (d) none of these

39. The function
$$f(x) = \begin{cases} x^m \sin \frac{1}{x'} & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$
 at $x = 0$ is continuous if

- (a) $m \ge 0$

- (b) m > 0 (c) m < 0 (d) none of these

40. The function
$$f(x) = \begin{cases} \frac{1-\cos 10 x}{x^2}, & \text{if } x < 0 \\ m, & \text{if } x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x} - 25}}, & \text{if } x > 0 \end{cases}$$
 if $x > 0$

- (a) 25
- (b) 50
- (c) –25 (d) none of these

41. The set of all points where $f(x) = \sec 2x + \csc 2x$ is discontinuous is

- (a) $\{n\pi: n=0,\pm 1,\pm 2,\ldots\}$ (b) $\left\{\frac{n\pi}{2}: n=0,\pm 1,\pm 2,\ldots\right\}$
- (c) $\left\{\frac{(2n+1)\pi}{4}; n=0,\pm 1,\pm 2,\ldots\right\}$ (d) $\left\{\frac{n\pi}{4}: n=0,\pm 1,\pm 2,\ldots\right\}$

tinuity and Differentiability 127

42. If f(x) = x'', then the value of

$$f(1) + \frac{f(1)}{1!} + \frac{f^2(1)}{2!} + \frac{f^3(1)}{3!} + \dots + \frac{f^n(1)}{n!}$$
, where $f^r(1)$

is the r^{th} derivative of f(x) w.r.t. x.

- (a) 1
- (b) n

- (c) 2^{n}
- (d) none of these

43. If f(x), g(x), h(x) are polynomials in x of degree 2 and

$$F(x) = \begin{vmatrix} f(x) & g(x) & h(x) \\ f'(x) & g'(x) & h'(x) \\ f''(x) & g''(x) & h''(x) \end{vmatrix}, \text{ then } F'(x) \text{ is equal to}$$

- (u) -1
- (b) 2
- (c) 0
- (d) none of these

The derivative of $f(\tan x)$ w.r.t. $g(\sec x)$ at $x = \frac{\pi}{4}$, where $f'(1) = g'(\sqrt{2}) = 4$ is

- (b) $\frac{1}{\sqrt{2}}$
- (c) 1
- (d) none of these

If g is inverse function of f and $f'(x) = \sin x$, then g'(x) is

- (a) $\sin(g(x))$ (b) $\sin^{-1} x$ (c) $\frac{1}{\sqrt{1-x^2}}$
- (d) cosec (g(x))

46. If $y = \left(\frac{x}{n}\right)^{nx} \left(1 + \log \frac{x}{n}\right)$, y'(n) is given by

- (a) $\frac{n^2+1}{n}$ (b) $\frac{1}{n}$ (c) $\left(\frac{1}{n}\right)^n \left(\frac{1}{n}\right)^n \left(\frac{n^2+1}{n}\right)$

47. If $f(x) = \log \sqrt{\tan x}$, then the value of f'(x) at $x = \frac{\pi}{4}$ is

- $(a) \infty$
- (b) 1

- (d) $\frac{1}{2}$

Let y be a function of x such that $\log (x + y) - 2xy = 0$, then y'(0) is

- (a) 0
- (b) 1

- (d) $\frac{3}{2}$

If $x \cos y + y \cos x = \pi$ then y''(0) is

- (a) π
- (c) 0
- (d) 1

50. Let $f(x) = \begin{bmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ n & n^2 & n^3 \end{bmatrix}$, where p is constant, then find f'''(0).

- (b) 0
- (c) $p + p^3$
 - $(d) p + p^2$

51. If $y = f\left(\frac{3x+4}{5x+6}\right)$ and $f'(x) = \tan x^2$ then $\frac{dy}{dx}$ is equal to

- (a) $-2 \tan \left(\frac{3x+4}{5x+6}\right)^2 \times \frac{1}{(5x+6)^2}$
- (b) $\tan x^2$

(c) $f\left(\frac{3\tan x^2 + 4}{5\tan x^2 + 6}\right)$

(d) none of these

The set of all points where the function f(x) = x |x| is differentiable is

- $(a) (-\infty, \infty)$
- (b) $(-\infty, 0) \cup (0, \infty)$ (c) $(0, \infty)$
- $(d) [0,\infty)$

53. Let $f(x) = \cos^{-1}(\cos x)$ then f(x) is

- (a) continuous at $x = \pi$ and not differentiable at $x = \pi$.
- (b) continuous at $x = -\pi$

128 Mathematics—XII: Term—1

- (c) differentiable at x = 0
- (d) differentiable at $x = \pi$
- 54. Let f(x) = x |x| then f(x) is
 - (a) differentiable $\forall x \in \mathbb{R}$
 - (b) continuous $\forall x \in \mathbb{R}$ and not differentiable at x = 0
 - (c) neither continuous nor differentiable at x = 0
 - (d) discontinuous at x = 0

55. Let
$$f(x) = \begin{cases} -1, & -2 \le x < 0 \\ x^2 - 1, & 0 < x \le 2 \end{cases}$$
 and $g(x) = |f(x)| + f(|x|)$

then the number of points at which g(x) is non-differentiable is

- (a) at most one point (b) two
- (c) exactly one point (d) infinite
- 56. Let f(x) be differentiable function such that

$$f\left(\frac{x+y}{1-xy}\right) = f(x) + f(y) \ \forall \ x \ \text{and} \ y.$$

If $\lim_{x\to 0} \frac{f(x)}{x} = \frac{1}{3}$ then f(1) is equal to

- (a) $\frac{\pi}{4}$
- (b) $\frac{\pi}{12}$
- (c) $\frac{\pi}{6}$
- (d) None of these

57. Let
$$f(x) = \begin{cases} 1 - 3x, & x < 0 \\ 3, & x = 0 \text{ then at } x = 0 \\ x^2 + 3, & x > 0 \end{cases}$$

- (a) f(x) is continuous from left
- (b) f(x) is continuous

(c) f(x) is right continuous

(d) f(x) has removable discontinuity

58. Let
$$f(x) = |\sin x|$$
; $0 \le x \le 2\pi$ then

- (a) f(x) is differentiable function at infinite number of points
- (b) f(x) is non-differentiable at 3 points and continuous everywhere.
- (c) f(x) is discontinuous everywhere
- (d) f(x) is discontinuous at 3 points

59. Let
$$f(x) = \begin{cases} \left[\tan\left(\frac{\pi}{4} + x\right)\right]^{\frac{1}{x}}, & x \neq 0 \\ k, & x = 0 \end{cases}$$

then the value of k such that f(x) holds continuity at x = 0 is

- (a) e
- (b) $\frac{1}{e^2}$
- (c) e^2
- (d) None of these
- 60. Let $f(x) = x^2 |x|$ then the set of values, where f(x) is three times differentiable, is
 - (a) Infinite
- (b) 2

- (c) 3
- (d) None of these
- 61. Let $f(x) = \begin{cases} -3 & -3 \le x < 0 \\ x^2 3 & 0 \le x \le 3 \end{cases}$ and g(x) = |f(x)| + f(|x|) then which of the following is true?
 - (a) At x = 0, g(x) is continuous as well as differentiable and at $x = \sqrt{3}$, g(x) is continuous but not differentiable.
 - (b) At $x = \sqrt{3}$, g(x) is neither continuous nor differentiable
 - (c) At x = 2, g(x) is neither continuous nor differentiable
 - (d) None of these

ntinuity and Differentiability 129

62. Let $f(x) = x^{3/2} - \sqrt{x^3 + x^2}$ then

(a) LHD at x = 0 exists but RHD at x = 0 does not exists

(b) f(x) is differentiable at x = 0

(c) RHD at x = 0 exists but LHD at x = 0 does not exists

(d) None of these

63. Number of points at which $f(x) = \frac{1}{\log|x|}$ is discontinuous is

(a) 2

(b) 3

c) 1

(d) 4

64. If $f(x) = \frac{\sin 4\pi \left[\pi^2 x\right]}{7 + |x|^2}$, [•] denotes the greatest integer function, then f(x) is

(a) continuous for all x but f'(x) does not exist

(b) discontinuous at some x

(c) f''(x) exists for all x

(*d*) f'(x) exists but f'(x) does not exist for some value of x.

65. The function $f(x) = \begin{cases} \frac{\sin^3 x^2}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$ is

(a) continuous but not derivable at x = 0

(b) neither continuous nor differentiable at x = 0

(c) continuous and differentiable at x = 0

(*d*) none of these

66. Let $f(x) = \sin^{-1}\left(\frac{1+x^2}{2x}\right)$ then f(x) is

(a) differentiable at x = 1

(b) continuous $\forall x \in \mathbb{R}$

(c) neither continuous nor differentiable at x = 1

(d) continuous but not differentiable at x = 1

67. Let $f(x) = \begin{cases} x, & x < 1 \\ 2 - x, & 1 \le x \le 2 \text{ then } f(x) \text{ is } \\ -2 + 3x - x^2, & x > 2 \end{cases}$

(a) differentiable at x = 1

(b) differentiable at x = 2

(c) differentiable at x = 1 and x = 2

(d) none of these

68. Let $f(x) = |\log |x||$ then

(a) f(x) is continuous in its domain but not differentiable at $x = \pm 1$

(b) f(x) is continuous and differentiable for all x in its domain

(c) f(x) is neither continuous nor differentiable at $x = \pm 1$

(d) all of these

69. Let $g(x) = \begin{cases} e^{2x}, & x < 0 \\ e^{-2x}, & x \ge 0 \end{cases}$ then g(x) does not satisfy the condition

(a) continuous $\forall x \in \mathbb{R}$

(b) not differentiable at x = 0

(c) continuous $\forall x \in \mathbb{R}$ and non differentiable at $x = \pm 1$

(d) none of these

130 Mathematics-XII: Term-1

Let $f(x) = [x]^2 + \sqrt{x}$, where [.] and {.} respectively denotes the greatest integer and fractional part functions, then

- (a) f(x) is continuous at all integral points
- (b) f(x) is non differentiable $\forall x \in \mathbb{Z}$
- (c) f(x) is discontinuous $\forall x \in \mathbb{Z} \{1\}$
- (d) f(x) is continuous and differentiable at x = 0

Find the value of a if the function f(x) defined by

$$f(x) = \begin{cases} 2x - 1, & x < 2 \\ a, & x = 2 \text{ is continuous at } x = 2. \\ x + 1, & x > 2 \end{cases}$$

- (a) 3 (b) -3
- (c) 0
- (d) 4

If the function f(x) defined by

$$f(x) = \begin{cases} \frac{\log(1+ax) - \log(1-bx)}{x}, & \text{if } x \neq 0 \\ k, & \text{if } x = 0 \end{cases}$$
 is continuous at $x = 0$, find k .

- (a) a (b) b

- (c) a+b
- (d) 0

73. If function $f(x) = e^{-|x|}$ is

- (a) continuous everywhere but not differentiable at x = 0
- (b) continuous and differentiable everywhere
- (c) not continuous at x = 0
- (d) None of these.

74. If $x^y = e^{x-y}$ find $\frac{dy}{dx}$.

(a)
$$\frac{\log x}{(1 + \log x)^2}$$
 (b)
$$\frac{x}{\log x}$$

- (c) $\frac{\log x}{(1 \log x)^2}$
- (d) None of these

75. If $x^y = y^x$, find $\frac{dy}{dx}$.

- (a) $x \log x$
- (b) $\frac{y}{x} \cdot \left(\frac{x \log y y}{y \log x y} \right)$ (c) 0
- (d) None of these

76. If $y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + ...}}} \infty$, find $\frac{dy}{dx}$.

- (a) $\frac{\cos x}{2y+1}$ (b) $\frac{\cos x}{2y-1}$

- (c) None of these

77. If $x = \sqrt{a^{\sin^{-1}t}}$, $y = \sqrt{a^{\cos^{-1}t}}$, a > 0 and -1 < t < 1, then $\frac{dy}{dx}$ is:

- (a) $\frac{y}{x}$ (b) $\frac{x}{y}$
- (d) None of these

78. Derivative of $\tan^{-1}\left(\frac{1+2x}{1-2x}\right)$ w.r.t $\sqrt{1+4x^2}$:

(a) $\frac{1}{2x\sqrt{1+4x^2}}$ (b) $\frac{1}{x\sqrt{1+x^2}}$ (c) $\frac{1}{4x\sqrt{1+2x^2}}$ (d) $\frac{1}{2x\sqrt{1-4x^2}}$

79. If $f(x) = \begin{vmatrix} x + a^2 & ab & ac \\ ab & x + b^2 & bc \\ ac & bc & x + c^2 \end{vmatrix}$, find f'(x).

- (a) $3x^2 2x(a^2 + b^2 + c^2)$ (b) $3x^2 + 2x(a^2 + b^2 + c^2)$

inuity and Differentiability 131

(c) 0

(d) None of these

- 80. If $y = x^x$ find $\frac{d^2y}{dx^2}$.
 - (a) $x^{x} \left\{ (1 + \log x)^{2} \frac{1}{x} \right\}$

(c) 0

- (b) $x^{x} \left\{ (1 + \log x)^{2} + \frac{1}{x} \right\}$ (d) $x^{x} \left\{ (1 \log x)^{2} + \frac{1}{x} \right\}$
- 81. Find $\frac{d^2y}{dx^2}$, if $x = at^2$, y = 2at.
- (c) $\frac{-1}{2at^2}$
- (d) 0
- Determine the value of the constant k so that the function

- (d) 0

Answers

- **1.** (c)
- **2.** (a) **3.** (d)
- **4.** (d)
- **5.** (b)
- **6.** (*d*)

- 7. (a) 8. (b) 9. (c) 10. (a) 11. (a)
 - **17.** (a)
- **12.** (*c*)

18. (*c*)

- **13.** (*b*) **19.** (*d*)
- **14.** (a) **20.** (*d*)
 - **15.** (*d*) **21.** (c)
- **16.** (b) **22.** (*d*)
- **23.** (*c*)
- **24.** (*a*)

- **25.** (b)
- **26.** (a)
- **27.** (*c*)
- **28.** (b)
- **29.** (*c*) **35.** (*b*)
 - **30.** (*b*) **36.** (*d*)

- **31.** (*c*) **37.** (*b*)
- **32.** (*d*) **38.** (*b*)
- **33.** (*c*) **39.** (*b*)
- **34.** (b) **40.** (b)

46. (a)

- **41**. (*d*)

47. (b)

42. (*c*)

- **43.** (*c*) **49.** (a)
- **44**. (a) **50.** (*b*)
- **45.** (*d*) **51.** (*a*)
- **52.** (*a*)
- **53.** (*a*)
- **54.** (*b*) **60.** (*a*)

- **55.** (*c*) **61.** (a)
- **56.** (*b*) **62.** (*c*)

68. (a)

- **57.** (*c*) **63.** (*b*)
- **58.** (*b*) **64.** (c)
- **65.** (*c*)
- **59.** (*c*)
- - **71.** (a)
- **66.** (*c*)

72. (*c*)

48. (*b*)

67. (b) **73.** (*a*)

79. (b)

- **74.** (a) **80.** (b)
- **75.** (*b*)

81. (a)

69. (*c*)

70. (c) **76.** (b)

82. (*b*)

- 77. (c)
- **78.** (*a*)

CASE-BASED QUESTIONS

Choose the correct option in the following questions.

1. Read the following and answer any four questions from (i) to (v).

A potter made a mud vessel, where the shape of the pot is based on f(x) = |x-3| + |x-2|, where f(x) represents the height of the pot.

[CBSE Question Bank]

Answer the questions given below.

- (i) When x > 4 What will be the height in terms of x?
 - (a) x 2
- (b) x 3
- (c) 2x 5
- (d) 5 2x

132 Mathematics—XII: Term-1

- (ii) Will the slope vary with x value?
 - (a) Yes

- (b) No
- (c) may or may not vary(d) none of these
- (iii) What is $\frac{dy}{dx}$ at x = 3
 - (a) 2

- (b) -2
- (c) Function is not differentiable
- (d) 1
- (iv) When the x value lies between (2, 3) then the function is
 - (a) 2x 5
- (b) 5 2x
- (c) 1
- (d) 5
- (v) If the potter is trying to make a pot using the function f(x) = [x], will he get a pot or not? Why?
 - (a) Yes, because it is a continuous function
 - (b) Yes, because it is not continuous
 - (c) No, because it is a continuous function
 - (d) No, because it is not continuous
- **Sol.** (i) We have, f(x) = |x-3| + |x-2|

When x > 4

$$f(x) = (x-3) + (x-2) = 2x-5$$

- \therefore Option (c) is correct.
- (ii) Yes, because when 2 < x < 3, we have

$$f(x) = -(x-3) + (x-2) = 1$$

$$\Rightarrow$$
 Slope = $f'(x) = 0$

but when x > 3, we have

$$f(x) = x - 3 + x - 2 = 2x - 5$$

then slope = f'(x) = 2

- ∴ Option (a) is correct.
- (iii) At x = 3

I.H.D =
$$\lim_{\lambda \to 0} \frac{f(3-\lambda) - f(3)}{-\lambda} = \lim_{\lambda \to 0} \frac{-(3-\lambda-3) + (3-\lambda-2) - 1}{-\lambda}$$

$$= \lim_{\lambda \to 0} \frac{\lambda + 1 - \lambda - 1}{-\lambda} = \lim_{\lambda \to 0} \frac{0}{-\lambda} = 0$$

R.H.D =
$$\lim_{\lambda \to 0} \frac{f(3+\lambda) - f(3)}{\lambda}$$

$$= \lim_{\lambda \to 0} \frac{(3 + \lambda - 3) + (3 + \lambda - 2) - 1}{\lambda}$$

$$= \lim_{\lambda \to 0} \frac{\lambda + 1 + \lambda - 1}{\lambda} = 2$$

 $L.H.D \neq R.H.D$ at x = 3

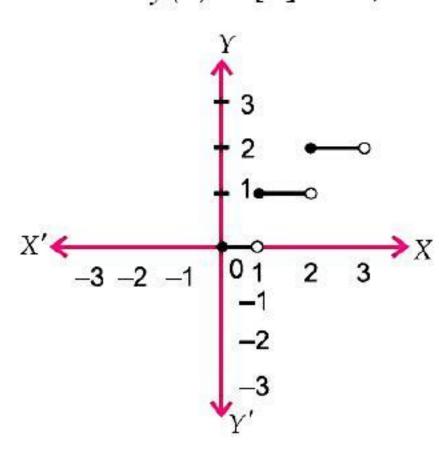
- f(x) is not differentiable at x = 3
- \therefore Option (c) is correct.
- (iv) When 2 < x < 3, we have

$$f(x) = -(x-3) + (x-2) = 1$$

tinuity and Differentiability | 133

 \therefore Option (c) is correct.

(v) We have the function $f(x) = [x] \le x$, where x is an integer.



It is not a continuous function, so the potter can not make a pot using the function f(x) = [x].

 \therefore Option (*d*) is correct.

ASSERTION-REASON QUESTIONS

In the following questions, a statement of Assertion (A) is followed by a statement of Reason (R). Choose the correct answer out of the following choices.

(a) Both A and R are true and R is the correct explanation of A.

(b) Both A and R are true but R is not the correct explanation of A.

(c) A is true but R is false.

(d) A is false and R is also false.

1. Assertion (A): If f(x).g(x) is continuous at x = a. then f(x) and g(x) are separately continuous at x = a.

Reason (R): Any function f(x) is said to be continuous at x = a, if $\lim_{h \to 0} f(a + h) = f(a)$.

2. Assertion (A): If f(x) and g(x) are two continuous functions such that f(0) = 3, g(0) = 2, then $\lim_{x \to 0} \{f(x) + g(x)\} = 5$.

Reason (R): If f(x) and g(x) are two continuous functions at x = a then $\lim_{x \to a} \{ f(x) + g(x) \} = \lim_{x \to a} f(x) + \lim_{x \to a} g(x).$

3. Assertion (A): $|\sin x|$ is a continuous function.

Reason (R): If f(x) and g(x) both are continuous functions, then gof(x) is also a continuous function.

4. Assertion (A): If $y = \sin x$, then $\frac{d^3y}{dx^3} = -1$ at x = 0.

Reason (R): If y = f(x). g(x), then $\frac{dy}{dx} = f(x)$. $\frac{d}{dx}g(x) + g(x)\frac{d}{dx}f(x)$.

Answers

1. (*d*)

2. (a)

3. (a)

4. (b)

HINTS/SOLUTIONS OF SELECTED MCQS

1. We have,

$$f(x) = -|x-1| = \begin{cases} x-1, & \text{if } x \le 1 \\ -(x-1), & \text{if } x > 1 \end{cases}$$

At
$$x = 1$$

LHL =
$$\lim_{h \to 0} f(1-h) = \lim_{h \to 0} \{(1-h)-1\} = 0$$

RHL=
$$\lim_{h\to 0} f(1+h) = \lim_{h\to 0} -(1+h-1) = 0$$

$$f(1) = 1 - 1 = 0$$

 \therefore LHL = RHL = $f(0) \implies f(x)$ is continuous every where.

Now, at
$$x = 1$$

LHD =
$$\frac{d}{dx}(x-1) = 1$$
; RHD = $\frac{d}{dx}\{-(x-1)\} = -1$

- \therefore f(x) is not differentiable of x = 1.
- \therefore Option (c) is correct.
- 3. f(x) = [x]

Let
$$c \in Z$$

LHL =
$$\lim_{x \to c^{-}} f(x) = \lim_{h \to 0} f(c - h) = \lim_{h \to 0} [c - h]$$

= $c - 1$ [: $h > 0 \Rightarrow -h < 0 \Rightarrow c - h < c$ and $c \in Z$]

RHL =
$$\lim_{h \to 0} f(x) = \lim_{h \to 0} f(c+h) = \lim_{h \to 0} [c+h]$$

RHL =
$$\lim_{x \to c^+} f(x) = \lim_{h \to 0} f(c+h) = \lim_{h \to 0} [c+h]$$

= $c[\because h > 0 \Rightarrow c+h > c \text{ and } c \in Z]$

As LHL \neq RHL for $c \in Z$

- \therefore f(x) is not continuous at and $c \in \mathbb{Z}$ and $c \in \mathbb{Z}$ is an orbitrary so f(x) is not continuous at all the integers.
- \therefore In the given option (*d*) is the correct option

4.
$$f(x) = \frac{1}{x - [x]}$$

$$\therefore x - [x] = 0 \quad \forall \quad x \in Z$$

f(x) is not defined $\forall x \in Z$ number of points of discontinuity is infinite.

- \therefore Option (*d*) is correct.
- 6. Indeed $\lim_{x\to 0} \sin \frac{1}{x}$ does not exist.
 - ∴ Option (d) is correct.
- 7. We know that, $f(x) = \cot x$ is continuous in $R \{n \pi : n \in Z\}$.

Since,
$$f(x) = \cot x = \frac{\cos x}{\sin x}$$

[since, $\sin x = 0$ at $\{n\pi, n \in Z\}$]

Hence, $f(x) = \cot x$ is discontinuous on the set $\{x = n\pi : n \in Z\}$.

- ∴ Option (a) is correct.
- $f(x) = |\sin x|$

As sin x is continuous everywhere so $f(x) = |\sin x|$ is continuous everywhere.

And $\sin x = 0$ for $x = n\pi$, $n \in Z$

tinuity and Differentiability 135

 $f(x) = |\sin x|$ is not differentiable at $x = n\pi$: $n \in \mathbb{Z}$

- \therefore Option (b) is correct.
- 10. $\therefore f(x) = x^2 \sin\left(\frac{1}{x}\right)$, where $x \neq 0$; $\therefore \lim_{x \to 0} f(x) = 0$

Hence, value of the function f at x = 0, so that it is continuous at x = 0 is 0.

 \therefore Option (a) is correct.

12.
$$f(x) = \frac{4-x^2}{4x-x^3}$$

f(x) is discontinuous where $4x - x^3 = 0$

i.e.,
$$x(4-x^2) = 0$$
 i.e., $x(2+x)(2-x) = 0$ i.e., At $x = 0, -2, 2$

Hence f(x) is discontinuous at exactly three points.

- \therefore Option (c) is correct.
- 13. $f(x) = |x 3|\cos x = g(x)h(x)$ where g(x) = |x 3| and $h(x) = \cos x$ $h(x) = \cos x$ is differentiable everywhere

But g(x) = |x - 3| is differentiable everywhere except at x = 3.

- \therefore f(x) g(x) h(x) is differentiable everywhere except at x 3.
- f(x) = g(x) h(x) is differentiable at $x \in R \{3\}$.
- \therefore Option (b) is correct.

15.
$$u = \sin^{-1}\left(\frac{2x}{1+x^2}\right) = 2\tan^{-1}x \implies \frac{du}{dx} = \frac{2}{1+x^2}$$

$$v = \tan^{-1}\left(\frac{2x}{1-x^2}\right) = 2\tan^{-1}x \implies \frac{dv}{dx} = \frac{2}{1+x^2}$$

$$\therefore \frac{du}{dv} = \frac{du/dx}{dv/dx} = \frac{2/1 + x^2}{2/1 + x^2} = 1$$

- \therefore Option (*d*) is correct.
- 16. We have, $y = \log \sqrt{\tan x}$

$$\therefore \frac{dy}{dx} = \frac{1}{\sqrt{\tan x}} \times \frac{1}{2\sqrt{\tan x}} \times \sec^2 x$$

$$\Rightarrow \frac{dy}{dx} = \frac{\sec^2 x}{2\tan x} \Rightarrow \frac{dy}{dx}_{\text{at } x = \frac{\pi}{4}} = \frac{(\sqrt{2})^2}{2 \times 1} = \frac{2}{2} = 1$$

- \therefore Option (b) is correct.
- **18.** LHD (at x = 0) \neq RHD (at x = 0)

Also, LHD (at
$$x = 2$$
) \neq RHD (at $x = 2$)

Therefore, f(x) = |x| + |x-2| is not differentiable at x = 0 and x = 2.

- .: Option (c) is correct.
- 19. Since, the value of function $f(x) = \tan x$ is $\pm \infty \quad \forall \ x = (2n+1)\frac{\pi}{2}, \ n \in \mathbb{Z}$.

Hence $f(x) = \tan x$ is discontinuous on the set $\left\{ x : x = (2n+1)\frac{\pi}{2}, n \in Z \right\}$.

- \therefore Option (*d*) is correct.
- **20.** Let $y = \tan x$ and $t = \sin x$
- 136 Mathematics—XII: Term—1

$$\Rightarrow \frac{dy}{dx} = \sec^2 x$$
 and $\frac{dt}{dx} = \cos x$

Now, derivative of tan x w.r.t. $\sin x = \frac{dy}{dt} = \frac{dy/dx}{dt/dx} = \frac{\sec^2 x}{\cos x} = \sec^3 x$

 \therefore Option (*d*) is correct.

$$\Rightarrow$$
 Function $\frac{g(x)}{f(x)}$ is discontinuous at $x = 3$.

 \therefore Option (d) is correct.

24.
$$\therefore \lim_{x \to 0} f(x) \text{ exists} \Rightarrow \lim_{x \to 0^-} f(x) = \lim_{x \to 0^+} f(x)$$

$$\Rightarrow \lim_{h \to 0} f(0-h) = \lim_{h \to 0} f(0+h)$$

$$\Rightarrow \lim_{h \to 0} f(-h) = \lim_{h \to 0} f(h)$$

$$\Rightarrow \lim_{h \to 0} \{ |-h| + a \} = \lim_{h \to 0} \cos[h]$$

$$\Rightarrow a = \cos 0 \Rightarrow a = 1$$

 \therefore Option (a) is correct.

25. Since,
$$0 \le x < 1 \Rightarrow -1 \le x - 1 < 0 \Rightarrow [x - 1] = -1$$

$$1 \le x < 2 \Rightarrow 0 \le x - 1 < 1 \Rightarrow [x - 1] = 0$$

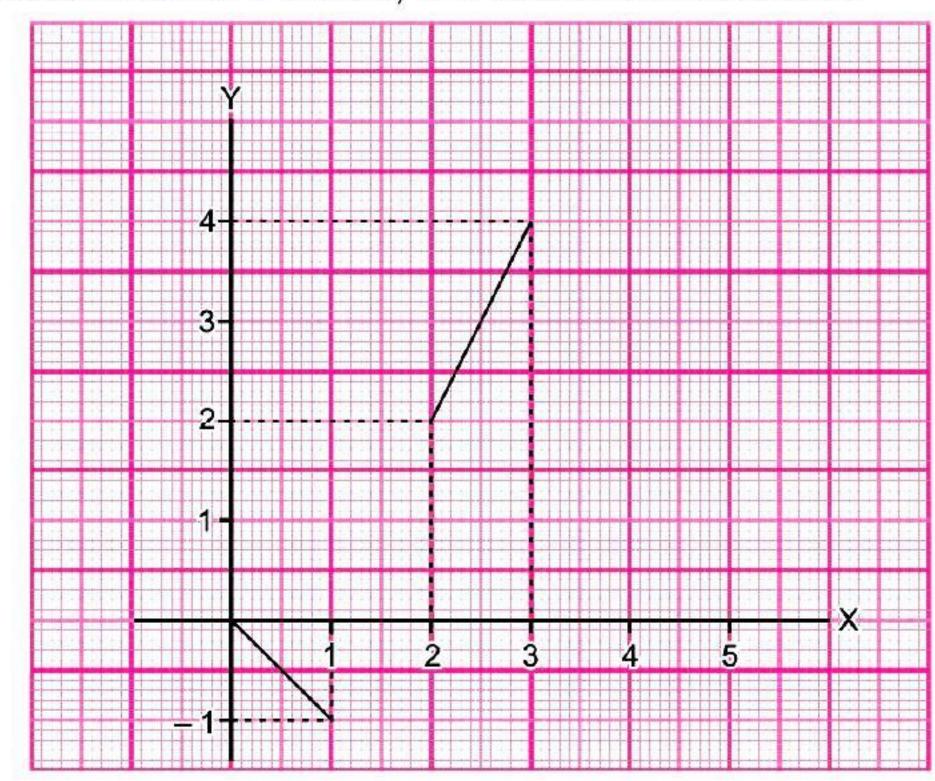
And
$$2 \le x < 3 \Rightarrow [x] = 2$$

Therefore, given function may be written as

$$f(x) = \begin{cases} -x, & 0 \le x < 1 \\ 0, & 1 \le x < 2 \\ 2(x-1), & 2 \le x < 3 \end{cases}$$

From the graph it is obvious that

f(x) is not continuous at x = 1 and 2, and thus not differentiable



 \therefore Option (b) is correct.

29. Given expression is

$$x = e^{y + e^{y + \dots - to \infty}}$$
 \Rightarrow $x = e^{y + x}$

Taking log on both sides, we have

$$\log x = \log e^{y+x} \qquad \Rightarrow \qquad \log x = y+x$$

Differentiating, w.r.t. x, we get

$$\frac{1}{x} = \frac{dy}{dx} + 1 \qquad \Rightarrow \qquad \frac{dy}{dx} = \frac{1}{x} - 1$$

$$\Rightarrow \qquad \frac{dy}{dx} = \frac{1 - x}{x}$$

$$\therefore$$
 Option (c) is correct.

32.
$$f(x) = \begin{cases} \sin \frac{1}{x}, & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \sin\left(\frac{1}{x}\right) \text{ does not exist.}$$

But value of $\sin\left(\frac{1}{x}\right)$ oscillates between – 1 and 1.

 \therefore Option (*d*) is correct.

$$36 f(x) = \frac{1}{x-1}$$

As
$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{1}{x - 1}$$
 does not exist.

$$\therefore$$
 $f(x)$ has asymptotic discontinuity.

$$\therefore$$
 Option (*d*) is correct.

37.
$$y = \frac{e^x}{x}$$
 is the curve which has vertical asymptotes at $x = 0$.

$$\therefore$$
 Option (b) is correct.

38.
$$y = x + e^{-x} \sin x = x + \frac{\sin x}{e^x}$$

$$\therefore \lim_{x \to \infty} \frac{\sin x}{e^x} = 0$$

As
$$-1 \le \sin x \le 1$$

$$\therefore -e^{-x} \le e^{-x} \sin x \le e^{-x}$$

$$\lim_{x \to \infty} \pm e^{-x} = 0$$

$$\therefore \lim_{x \to \infty} e^{-x} \sin x = 0$$

$$\therefore$$
 Line $y = x$ is oblique asymptote to the given curve.

$$\therefore$$
 Option (b) is correct.

41.
$$f(x) = \sec 2x + \csc 2x = \frac{1}{\cos 2x} + \frac{1}{\sin 2x}$$

$$\cos 2x = 0 \Rightarrow 2x = (2n + 1)\frac{\pi}{2} \Rightarrow x = (2n + 1)\frac{\pi}{4}$$
 where $n = 0, \pm 1, \pm 2, ...$

And
$$\sin 2x = 0 \Rightarrow 2x = n\pi \Rightarrow x = \frac{n\pi}{2}$$
 where $n = 0, \pm 1, \pm 2, \pm 3, ...$

138 Mathematics-XII: Term-1

None of the options (a), (b) and (c) are correct.

 \therefore Option (*d*) is correct.

42.
$$f(x) = x^n$$

$$f(1) + \frac{f^{1}(1)}{\underline{1}} + \frac{f^{2}(1)}{\underline{2}} + \frac{f^{3}(1)}{\underline{3}} + \dots + \frac{f^{n}(1)}{\underline{n}}$$

$$= 1 + \frac{n}{1} + \frac{n(n-1)}{\underline{2}} + \frac{n(n-1)(n-2)}{\underline{3}} + \dots + \frac{n(n-1)\dots 1}{\underline{n}}$$

= $(1+1)^n = 2^n$ [By using Binomial expansion]

Hence option (c) is correct.

43.
$$F(x) = \begin{cases} f(x) & g(x) & h(x) \\ f'(x) & g'(x) & h'(x) \\ f''(x) & g''(x) & h''(x) \end{cases}$$

where f(x), g(x), h(x) are polynomial of degree 2.

$$f'''(x) = 0 = g'''(x) = h'''(x)$$

$$F'(x) = \begin{vmatrix} f'(x) & g'(x) & h'(x) \\ f'(x) & g'(x) & h'(x) \\ f''(x) & g''(x) & h''(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ f''(x) & g''(x) & h''(x) \\ f'''(x) & g''(x) & h''(x) \end{vmatrix} + \begin{vmatrix} f(x) & g(x) & h(x) \\ f''(x) & g''(x) & h''(x) \\ f'''(x) & g'''(x) & h'''(x) \end{vmatrix}$$

$$= 0 + 0 + 0 = 0$$

 \therefore Option (c) is correct.

45. Given that g(x) is the inverse of f(x)

$$\therefore$$
 $(f \circ g)(x) = x \Rightarrow f(g(x)) = x$

$$\therefore f'(g(x))g'(x) = 1$$

$$\Rightarrow$$
 $g'(x) = \frac{1}{f'(g(x))}$

We have $f'(x) = \sin x$ so $f'(g(x)) = \sin (g(x))$

$$\therefore g'(x) = \frac{1}{\sin(g(x))} = \csc(g(x))$$

 \therefore Option (*d*) is correct.

47.
$$f(x) = \log \sqrt{\tan x}$$

$$f'(x) = \frac{1}{\sqrt{\tan x}} \times \frac{1}{2\sqrt{\tan x}} \times \sec^2 x \qquad = \frac{1}{2\tan x} \times \sec^2 x$$

$$f'\left(\frac{\pi}{4}\right) = \frac{1}{2 \times 1} \times (\sqrt{2})^2 = \frac{2}{2} = 1$$

Option (b) is correct.

50.
$$f(x) = \begin{vmatrix} x^3 & \sin x & \cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$$

$$f'(x) = \begin{vmatrix} 3x^2 \cos x - \sin x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} + \begin{vmatrix} x^3 \sin x \cos x \\ 0 & 0 & 0 \\ p & p^2 & p^3 \end{vmatrix} + \begin{vmatrix} x^3 \sin x \cos x \\ 6 & -1 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

ntinuity and Differentiability 139

$$= \begin{vmatrix} 3x^2 & \cos x & -\sin x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} + 0 + 0$$

$$\Rightarrow f'(x) = \begin{vmatrix} 3x^2 & \cos x & -\sin x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$$

$$\Rightarrow f''(x) = \begin{vmatrix} 6x - \sin x - \cos x \\ 6 - 1 & 0 \\ p & p^2 & p^3 \end{vmatrix} + \begin{vmatrix} 3x^2 \cos x - \sin x \\ 0 & 0 & 0 \\ p & p^2 & p^3 \end{vmatrix} + \begin{vmatrix} 3x^2 \cos x - \sin x \\ 6 - 1 & 0 \\ 0 & 0 & 0 \end{vmatrix}$$

$$= \begin{vmatrix} 6x & -\sin x & -\cos x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$$

Similarly,
$$f'''(x) = \begin{vmatrix} 6 & -\cos x & \sin x \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix}$$

$$\Rightarrow f'''(0) = \begin{vmatrix} 6 & -1 & 0 \\ 6 & -1 & 0 \\ p & p^2 & p^3 \end{vmatrix} = 0$$

 \therefore Option (b) is correct.

52.
$$f(x) = x|x| = \begin{cases} x^2 & \text{if } x \ge 0 \\ -x^2 & \text{if } x < 0 \end{cases}$$

At
$$x = 0$$

LHD =
$$\lim_{x \to 0^{-}} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^{-}} \frac{-x^{2} - 0}{x}$$

$$=\lim_{x\to 0^{-}}(-x)=0$$

RHD =
$$\lim_{x \to 0^+} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0^+} \frac{x^2 - 0}{x} = \lim_{x \to 0^+} (x) = 0$$

LHD = RHD so f is differentiable at x = 0.

And f(x) is also differentiable at $x \neq 0$.

... Set of all points where given function f(x) is differentiable is $R = (-\infty, \infty)$.

Option (a) is correct.

54.
$$f(x) = x - |x| = g(x) + h(x)$$

where
$$g(x) = x$$
, $h(x) = -|x|$

As g(x) and h(x) are both continuous $\forall x \in \mathbb{R}$

f(x) is continuous $\forall x \in \mathbb{R}$

And g(x) is differentiable $\forall x \in \mathbb{R}$

but h(x) is not differentiable at x = 0

 $\therefore f(x) = g(x) + h(x) \text{ is not differentiable at } x = 0$

 \therefore Option (b) is correct.

140 Mathematics—XII: Term—1

56. We have,
$$f\left(\frac{x+y}{1-xy}\right) = f(x) + f(y) \ \forall \ x, y \in \mathbb{R}$$

Since it is of the form
$$\tan^{-1}\left(\frac{x+y}{1-xy}\right) = \tan^{-1}x + \tan^{-1}y$$

Let
$$f(x) = A \tan^{-1} x$$

$$\lim_{x \to 0} \frac{f(x)}{x} = \lim_{x \to 0} \frac{A \tan^{-1} x}{x} = \frac{1}{3}$$

$$\Rightarrow A \lim_{x \to 0} \frac{\tan^{-1} x}{x} = \frac{1}{3} \quad \Rightarrow \quad A \times 1 = \frac{1}{3} \quad \Rightarrow \quad A = \frac{1}{3}$$

$$\therefore f(x) = \frac{1}{3} \tan^{-1} x$$

$$\Rightarrow f(1) = \frac{1}{3} \tan^{-1}(1) = \frac{1}{3} \times \frac{\pi}{4} = \frac{\pi}{12}$$

 \therefore Option (b) is correct.

57. LHL =
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} (1 - 3x) = 1$$

RHL =
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (x^{2} + 3) = 3$$

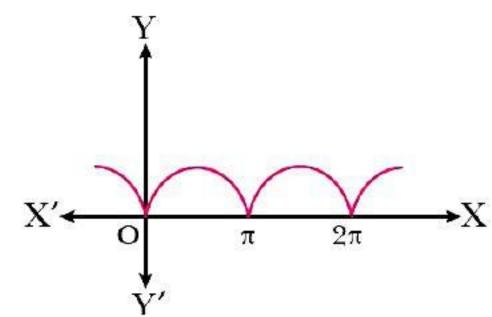
$$f(0) = 3$$
, LHL \neq RHL = $f(0)$

Here
$$\lim_{x\to 0^+} f(x) = f(0)$$

 \Rightarrow f(x) is right continuous but discontinuous from left.

 \therefore Option (c) is correct.

58.



It is clear from graph that f(x) is continuous everywhere in $0 \le x \le 2\pi$. And has sharp edge at x = 0, π , 2π so it is not differentiable at x = 0, π , 2π .

Because it has no unique tangents.

 \therefore Option (b) is correct.

59.
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} \left[\tan \left(\frac{\pi}{4} + x \right) \right]^{\frac{1}{x}} = \lim_{x \to 0} \left[\frac{1 + \tan x}{1 - \tan x} \right]^{\frac{1}{x}}$$

$$= \lim_{x \to 0} \left[(1 + \tan x)^{\frac{1}{\tan x}} \right]^{\frac{\tan x}{x}} \times \lim_{x \to 0} \left[(1 - \tan x)^{-\frac{1}{\tan x}} \right]^{\frac{\tan x}{x}}$$

$$= e \times e = e^2 \quad \left[\because \lim_{x \to 0} \left[1 + x \right]^{\frac{1}{x}} = e \right]$$

f(x) is continuous at x = 0.

$$\therefore \lim_{x \to 0} f(x) = f(0)$$

$$\Rightarrow e^2 = k \qquad \Rightarrow k = e^2$$

ntinuity and Differentiability 141

 \therefore Option (c) is correct.

62.
$$f(x) = x^{3/2} - \sqrt{x^3 + x^2}$$

Domain of $f = [0, \infty)$

So, LHD at x = 0 does not exists.

 \therefore Option (c) is correct.

$$63. \quad f(x) = \frac{1}{\log|x|}$$

f(x) is not defined for x = 0, -1, 1

 \therefore f(x) is not continuous at x = 0, -1, 1

 \therefore Option (b) is correct.

64. We have
$$f(x) = \frac{\sin 4\pi \left[\pi^2 x\right]}{7 + \left[x\right]^2}$$

We know that $[\pi^2 x]$ is an integer for every x.

 $\therefore 4\pi[\pi^2x]$ is an integral multiple of π .

$$\therefore \sin 4\pi [\pi^2 x] = 0 \text{ and } 7 + [x]^2 \neq 0 \ \forall \ x$$

$$\therefore f(x) = 0 \ \forall \ x$$

 \Rightarrow f(x) is a constant function so f'(x), f''(x), f''(x),f''(x) exists $\forall x$.

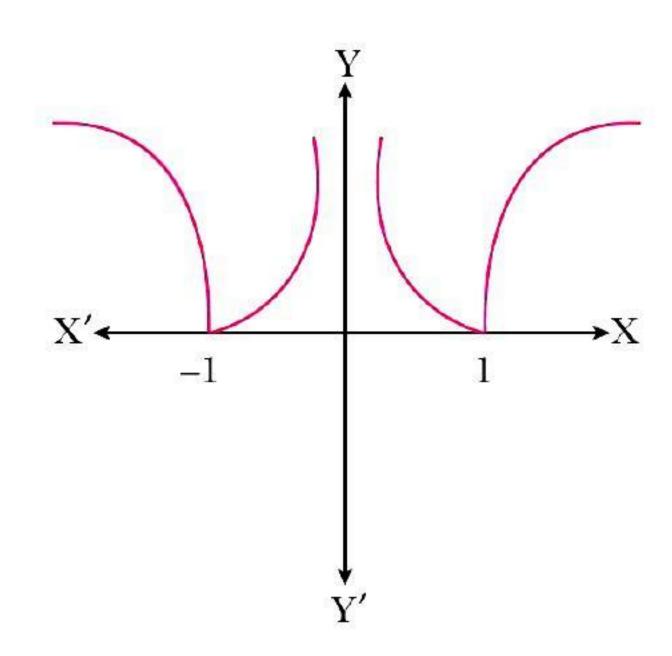
 \therefore Option (c) is correct.

We know that domain of $\sin^{-1}x$ is |x| < 1 and so $\sin^{-1}\left(\frac{1+x^2}{2x}\right)$ is defined only for |x| < 1.

Hence, f(x) is neither continuous nor differentiable at x = 1

 \therefore Option (c) is correct.

 $y = |\log |x||$



From the graph, f(x) is continuous in its domain but LHD at x = 1 is negative.

RHD at x = 1 is positive (as shown from the graph)

as LHD at
$$x = 1 \neq RHD$$
 at $x = 1$

f(x) is not differentiable at x = 1.

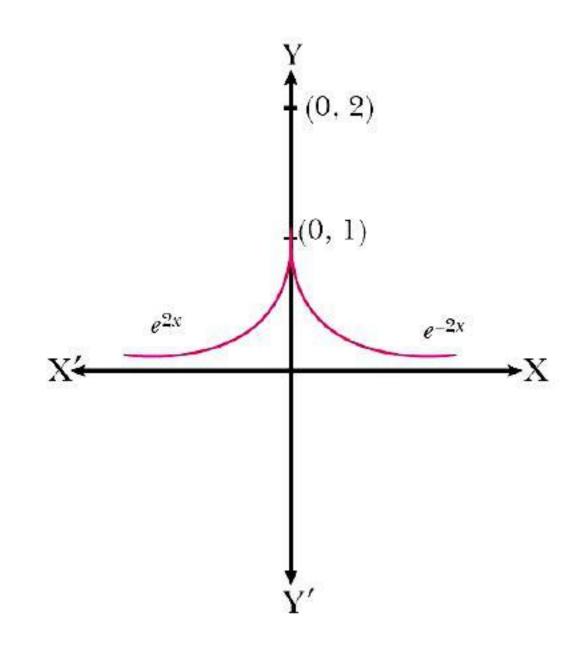
Also LHD at x = -1 is negative (as shown from the graph) and RHD at x = -1 is positive.

 \therefore f(x) is not differentiable at x = -1.

.. Option (a) is correct.

142 Mathematics-XII: Term-1

69.



Given
$$g(x) = \begin{cases} e^{2x}, & x < 0 \\ e^{-2x}, & x \ge 0 \end{cases}$$

$$g'(x) = \begin{cases} 2e^{2x}, & x < 0 \\ -2e^{-2x}, & x \ge 0 \end{cases}$$

:. LHD at
$$x = 0$$
, $g'(0) = 2e^{2 \times 0} = 2e^{0} = 2$

RHD at
$$x = 0$$
, $g'(0) = -2e^0 = -2 \times 1 = -2$

As LHD
$$\neq$$
 RHD at $x = 0$

 \therefore g(x) is not differentiable at x = 0.

Again RHL =
$$\lim_{x \to 0^{+}} g(x) = \lim_{x \to 0^{+}} e^{-2x} = e^{0} = 1$$

LHL =
$$\lim_{x \to 0^{-}} g(x) = \lim_{x \to 0^{-}} e^{2x} = e^{0} = 1$$

$$g(0) = e^0 = 1$$

As
$$LHL = RHL = f(0)$$

g(x) is continuous $\forall x \in \mathbb{R}$

 \therefore Option (c) is correct.

71.
$$f(x) = \begin{cases} 2x - 1, & x < 2 \\ a, & x = 2 \\ x + 1, & x > 2 \end{cases}$$

RHL =
$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (x + 1) = 3$$

LHL =
$$\lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} (2x - 1) = 4 - 1 = 3$$

: Since f is continuous at x = 2 so LHL = RHL = f(2)

$$\Rightarrow$$
 3 = $a \Rightarrow a = 3$

∴ Option (a) is correct.

73.
$$f(x) = e^{-|x|} = \frac{1}{e^{|x|}}$$
 is continuous everywhere but not differentiable at $x = 0$

∴ Option (a) is correct.

74.
$$x^y = e^{x-y}$$

Taking logarithm on both sides, we get

$$y \log x = (x - y) \log e = x - y$$

$$\Rightarrow (1 + \log x)y = x \Rightarrow y = \frac{x}{1 + \log x}$$

ntinuity and Differentiability 143

$$\frac{dy}{dx} = \frac{(1 + \log x) \times 1 - x\left(0 + \frac{1}{x}\right)}{(1 + \log x)^2} = \frac{1 + \log x - 1}{(1 + \log x)^2} = \frac{\log x}{(1 + \log x)^2}$$

∴ Option (a) is correct.

75.
$$x^y = y^x \Rightarrow y \log x = x \log y$$

 $\frac{y}{x} + \log x \frac{dy}{dx} = \frac{x}{y} \frac{dy}{dx} + \log y$
 $\Rightarrow \left(\log x - \frac{x}{y}\right) \frac{dy}{dx} = \left(\log y - \frac{y}{x}\right) = \frac{x \log y - y}{x}$
 $\Rightarrow \frac{dy}{dx} = \frac{x \log y - y}{y \log x - x} \times \frac{y}{x} = \frac{y}{x} \times \frac{x \log y - y}{y \log x - x}$

∴ Option (b) is correct.

76. Let
$$y = \sqrt{\sin x + \sqrt{\sin x + \sqrt{\sin x + ...}}}$$

 $\Rightarrow y = \sqrt{\sin x + y}$ should be out of square root
 $\Rightarrow y^2 = \sin x + y \Rightarrow y^2 - y = \sin x$
Differentiate with respect to x , we get

$$\therefore 2y \frac{dy}{dx} - \frac{dy}{dx} = \cos x$$

$$\Rightarrow (2y - 1) \frac{dy}{dx} = \cos x \Rightarrow \frac{dy}{dx} = \frac{\cos x}{\sqrt{2y - 1}}$$

 \therefore Option (b) is correct.

80.
$$y = x^{x} = e^{x \log x}$$

$$\therefore \frac{dy}{dx} = e^{x \log x} \left(x \times \frac{1}{x} + \log x \right)$$

$$= e^{x \log x} (1 + \log x)$$

$$\therefore \frac{d^{2}y}{dx^{2}} = e^{x \log x} \left(\frac{1}{x} \right) + (1 + \log x) e^{x \log x} (1 + \log x)$$

$$= \frac{x^{x}}{x} + (1 + \log x)^{2} e^{x \log x}$$

$$= x^{x-1} + (1 + \log x)^{2} x^{x} = x^{x} \left\{ (1 + \log x)^{2} + \frac{1}{x} \right\}$$

.. Option (b) is correct.

81.
$$x = at^{2} \Rightarrow \frac{dx}{dt} = 2at$$

$$y = 2at \Rightarrow \frac{dy}{dt} = 2a$$

$$\frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{2a}{2at} = \frac{1}{t}$$

$$\therefore \frac{d^{2}y}{dx^{2}} = -\frac{1}{t^{2}} \times \frac{dt}{dx} = -\frac{1}{t^{2}} \times \frac{1}{2at} = -\frac{1}{2at^{3}}$$

.. Option (a) is correct.

144 Mathematics—XII: Term—1

